新教案网

www.xinjiaoan.com

教案查询:
托班教案
小班教案
中班教案
大班教案
节日教案
季节教案
小一教案
小二教案
小三教案
小四教案
小五教案
小六教案
初一教案
初二教案
初三教案
高一教案
高二教案
高三教案
班会教案
更多
课本查询:
语文课本
数学课本
英语课本
物理课本
化学课本
政治课本
历史课本
生物课本
地理课本
科学课本
美术课本
音乐课本
体育课本
书法课本
更多
范文查询:
合同
申请书
各类稿件
工作计划
工作总结
演讲稿
主持稿
心得体会
办公文秘
致辞讲话
导游词
祝福语
工作报告
条据书信
更多
作文查询:
读后感
观后感
小学作文
初中作文
高中作文
英语作文
节日作文
日记作文
书信作文
题材作文
话题作文
作文素材
作文指导
文学阅读
更多
百科查询:
星座运势
美食推荐
旅游攻略
地方特产
热门影视
健康养生
儿童教育
生活技能
口才提升
逃生急救
安全知识
礼仪知识
节日知识
理财知识
更多

配方法教案

新教案网 收藏 点赞 分享
配方法教案

微信扫码分享

配方法教案2

来源于    教学内容
    给出配方法的概念,然后运用配方法解一元二次方程.
    教学目标
    了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
    通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
    重难点关键
    1.重点:讲清配方法的解题步骤.
    2.难点与关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.
    教具、学具准备
    小黑板
    教学过程
    一、复习引入
    (学生活动)解下列方程:
    (1)x2-4x+7=0   (2)2x2-8x+1=0
    老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
    解:略.    (2)与(1)有何关联?
    二、探索新知
    讨论:配方法届一元二次方程的一般步骤:
    (1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
    (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
    (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
    例1.解下列方程
    (1)2x2+1=3x   (2)3x2-6x+4=0   (3)(1+x)2+2(1+x)-4=0
    分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.
    解:略
    三、巩固练习
    教材P39  练习  2.(3)、(4)、(5)、(6).
    四、应用拓展
    例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6
    分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4= (6x+7)+ ,x+1= (6x+7)- ,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法.
    解:设6x+7=y
    则3x+4= y+ ,x+1= y-
    依题意,得:y2( y+ )( y- )=6
    去分母,得:y2(y+1)(y-1)=72
    y2(y2-1)=72, y4-y2=72
    (y2- )2=
    y2- =±
    y2=9或y2=-8(舍)
    ∴y=±3
    当y=3时,6x+7=3  6x=-4  x=-
    当y=-3时,6x+7=-3  6x=-10  x=-
    所以,原方程的根为x1=- ,x2=-
    例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.
    五、归纳小结
    本节课应掌握:
    1.配方法的概念及用配方法解一元二次方程的步骤.
    2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
    六、布置作业
    1.教材P45  复习巩固3.(3)(4)
    补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,则求x+y+z的值
    (2)求证:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是正数
    2.作业设计
    一、选择题
    1.配方法解方程2x2- x-2=0应把它先变形为(  ).
    A.(x- )2=     B.(x- )2=0
    C.(x- )2=     D.(x- )2=
    2.下列方程中,一定有实数解的是(  ).
    A.x2+1=0           B.(2x+1)2=0      C.(2x+1)2+3=0     D.( x-a)2=a
&

nbsp;   3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是(  ).
    A.1     B.2     C.-1      D.-2
    二、填空题
    1.如果x2+4x-5=0,则x=_______.
    2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.
    3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.
    三、综合提高题
    1.用配方法解方程.
    (1)9y2-18y-4=0                        (2)x2+3=2 x
    2.已知:x2+4x+y2-6y+13=0,求 的值.
    3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.
    ①若商场平均每天赢利1200元,每件衬衫应降价多少元?
    ②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.

来源于

精选图文

领取福利

微信扫码领取福利

配方法教案

微信扫码分享