新教案网

www.xinjiaoan.com

教案查询:
托班教案
小班教案
中班教案
大班教案
节日教案
季节教案
小一教案
小二教案
小三教案
小四教案
小五教案
小六教案
初一教案
初二教案
初三教案
高一教案
高二教案
高三教案
班会教案
更多
课本查询:
语文课本
数学课本
英语课本
物理课本
化学课本
政治课本
历史课本
生物课本
地理课本
科学课本
美术课本
音乐课本
体育课本
书法课本
更多
范文查询:
合同
申请书
各类稿件
工作计划
工作总结
演讲稿
主持稿
心得体会
办公文秘
致辞讲话
导游词
祝福语
工作报告
条据书信
更多
作文查询:
读后感
观后感
小学作文
初中作文
高中作文
英语作文
节日作文
日记作文
书信作文
题材作文
话题作文
作文素材
作文指导
文学阅读
更多
百科查询:
星座运势
美食推荐
旅游攻略
地方特产
热门影视
健康养生
儿童教育
生活技能
口才提升
逃生急救
安全知识
礼仪知识
节日知识
理财知识
更多

上学期 1.8 充分条件与必要条件

新教案网 收藏 点赞 分享
上学期 1.8 充分条件与必要条件

微信扫码分享

上学期 1.8 充分条件与必要条件

充要条件

教学目标:

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.

教学重点难点:关于充要条件的判断

教学用具:幻灯机或实物投影仪

教学过程设计

1.复习引入

练习:判断下列命题是真命题还是假命题(用幻灯投影):

(1)若 ,则

(2)若 ,则

(3)全等三角形的面积相等;

(4)对角线互相垂直的四边形是菱形;

(5)若 ,则

(6)若方程 有两个不等的实数解,则

(学生口答,教师板书.)

(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命题.如何判断其真假的?

答:看 能不能推出 ,如果 能推出

,则原命题是真命题,否则就是假命题.

对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 成立的充分条件,记作

2.讲授新课

(板书充分条件的定义.)

一般地,如果已知 ,那么我们就说 成立的充分条件.

提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

(学生口答)

(1)“ ,”是“ ”成立的充分条件;

(2)“三角形全等”是“三角形面积相等”成立的充分条件;

(3)“方程

的有两个不等的实数解”是“ ”成立的充分条件.

从另一个角度看,如果 成立,那么其逆否命题 也成立,即如果没有 ,也就没有 ,亦即 成立的必须要有的条件,也就是必要条件.

(板书必要条件的定义.)

提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

(学生口答).

(1)因为 ,所以 的充分条件, 的必要条件;

(2)因为 ,所以 的必要条件, 的充分

条件;

(3)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

(4)因为“四边形的对角线互相垂直” “四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

(5)因为 ,所以 的必要条件, 的充分条件;

(6)因为“方程 的有两个不等的实根” ”,而且“方程 的有两个不等的实根” ”,所以“方程 的有两个不等的实根”是“ ”充分条件,而且是必要条件.

总结:如果 的充分条件,

又是 的必要条件,则称 的充分必要条件,简称充要条件,记作

(板书充要条件的定义.)

3.巩固新课

例1  (用投影仪投影.)

B

AB的什么条件

B 的什么条件

是有理数

是实数

   

   

是奇数

是偶数

   

   

   

   

   

是4的倍数

是6的倍数

   

(学生活动,教师引导学生作出下面回答.)

①因为有理数一定是实数,但实数不一定是有理数,所以 的充分非必要条件, 的必要非充分条件;

一定能推出

,而 不一定推出 ,所以 的充分非必要条件, 的必要非充分条件;

是奇数,那么 一定是偶数; 是偶数, 不一定都是奇数(可能都为偶数),所以 的充分非必要条件, 的必要非充分条件;

表示

,所以 成立的必要非充分条件;

⑤由交集的定义可知 成立的充要条件;

⑥由 ,所以 成立的充分非必要条件;

⑦由 ,所以 成立的必要非充分条件;

⑧易知“ 是4的倍数”是“ 是6的倍数”成立的既非充分又非必要条件;

(通过对上述问题的交流、思辩,在

争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

例2  已知 的充要条件, 的必要条件同时又是 的充分条件,试 的关系.(投影)

解:由已知得

所以 的充分条件,或 的必要条件.

4.小结回授

今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件AB的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

课内练习:课本(人教版,试验修订本,第一册(上))第 35页练习l、2;第36页练习l、2.

(通过练习,检查学生掌握情况,有针对性的进行讲评.)

5.课外作业:教材第36页      习题1.8    1、2、3.


精选图文

领取福利

微信扫码领取福利

上学期 1.8 充分条件与必要条件

微信扫码分享