新教案网

www.xinjiaoan.com

教案查询:
托班教案
小班教案
中班教案
大班教案
节日教案
季节教案
小一教案
小二教案
小三教案
小四教案
小五教案
小六教案
初一教案
初二教案
初三教案
高一教案
高二教案
高三教案
班会教案
更多
课本查询:
语文课本
数学课本
英语课本
物理课本
化学课本
政治课本
历史课本
生物课本
地理课本
科学课本
美术课本
音乐课本
体育课本
书法课本
更多
范文查询:
合同
申请书
各类稿件
工作计划
工作总结
演讲稿
主持稿
心得体会
办公文秘
致辞讲话
导游词
祝福语
工作报告
条据书信
更多
作文查询:
读后感
观后感
小学作文
初中作文
高中作文
英语作文
节日作文
日记作文
书信作文
题材作文
话题作文
作文素材
作文指导
文学阅读
更多
百科查询:
星座运势
美食推荐
旅游攻略
地方特产
热门影视
健康养生
儿童教育
生活技能
口才提升
逃生急救
安全知识
礼仪知识
节日知识
理财知识
更多

函数的图象(一)

新教案网 收藏 点赞 分享
函数的图象(一)

微信扫码分享

函数的图象(一)

函数的图象(一)

 

一、教学目的

1.使学生初步认识函数的图象.

2.使学生了解函数的列表表示法.

3.使学生了解函数的图象表示法.

4.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:介绍函数图象的初步知识.

难点:对于函数图象的认识.

三、教学过程

复习提问

1.一种豆子每千克售2元,写出买豆子的总金额y(元)与所买豆子的数量x(千克)之间的函数关系.(答:y=2x.)

2.在第一题的函数式中,谁是自变量?谁是函数?说出自变量的取值范围.(答:x是自变量,y是x的函数,x可取所有非负实数.)

3.由函数y=2x,填出下表:


(答:下一行:0,1,2,3,4,5,6.)

4.平面直角坐标系是怎样组成的?(答:在平面内画两条互相垂直的数轴,组成平面直角坐标系.)

5.什么是点的横坐标、纵坐标、坐标?(答:平面直角坐标系中一个点A在x轴上的坐标叫横坐标a,点A在y轴上的坐标叫纵坐标b,把a,b合起来,且a在前、b在后:(a,b)就是点A的坐标.)

6.点A的坐标如(5,4),又可以称作什么?(答:一对有序实数.)

7.坐标平面内的点与有序实数对的关系是什么?(答:一一对应关系.)

新课

1.函数的表示法——列表法.

通过上述1~3个问题的提问及学生的回答,由y=2x及表格,按照函数定义,对于x的每一个值,y都有唯一的值和它对应.这就告诉我们,上面的表格本身也表示了y与x之间的函数关系.于是我们把这种通过列表表示函数的方法叫列表法.列表法的优点:容易由自变量的值求出对应的函数的值.列表法的缺点:不能把一个函数在自变量取值范围内的所有值都列出来,所以有局部性;或所求的函数值是近似值.

2.通过上述复习提问第3~7题及学生的回答,我们把第3题的表中的x,y值对应地写出来,就得出了一列有序实数对:(0,0),(0.5,1),(1,2),(1.5,3),….这里强调学生要进一步明确“有序”的意义,(1.5,3),(3,1.5)是不相同的有序实数对.再联系到平面内的点与有序实数对的一一对应关系,于是我们借助平面直角坐标系,就可以把这些有序实数对转化为坐标平面内的点.这样就可以用平面内的图形来表示函数关系.

3.从最简单的函数y=x入手来分析及画出其图象.

(1)让学生完成x与y的对应值表.


(2)在有坐标格的小黑板上,把表中给出的7个有序实数对作为点的坐标,师生一道描出这7个点.

(3)分析函数y=x的特点:自变量与函数的值相等.它的任意一对对应值都可以表示成(m,m)的形式(m可取全体实数).借助坐标平面可知,表示(m,m)的点就是到x轴的距离与到y轴的距离相等的点.我们把x轴与y轴所划分的坐标平面的四个角叫象限角,依次有第一象限角,第二象限角,第三象限角,第四象限角.由平面几何知识可知,到一个角的两边的距离相等的点,它的轨迹是这个角的平分线.换一句话说,到这个角两边距离相等的点,都在这个角的平分线上;反之,在这个角的平分线上的所有的点,到这个角的两边距离都相等.于是函数y=x的整个图象就可以画出了.它是第一象限角和第三象限角的两个角的平分线,是一条直线.

4.对于函数图象要辩证地双向分析:图象上每一个点的坐标,都是这个函数的一对对应值;反之,每个坐标是这个函数的一对有序的对应值的点,都在这个函数的图象上.

5.函数的表示法——图象法.我们用图象来表示一个函数的方法,叫图象法.函数的图象法优点:形象、直观.缺点:求得的函数值是近似的.

小结

1.画函数图象的方法步骤:

(1)根据函数的解析式列出函数对应值表.

(2)用这些对应值作为点的坐标,在坐标平面内描点.

(3)把这些点用平滑曲线连结起来,可得函数图象.

2.函数的三种表示法:(1)解析法,(2)列表法,(3)图象法.

练习;选用课本练习(只要求列表、描点.)

补充例题

1.解答课本本章题图中的两个问题.

2.画出函数y=3x的图象.(只要求列表、描点.)


作业:选用课本习题(只填表、描点,不要求连线.)

四、教学注意问题

1.注意双向思维的渗透与训练.比如,由函数的关系式可得函数图象;反之,由函数的图象也可表示函数关系,等等.

2.注意渗透转化思想方法.比如,把有序实数对转化为坐标平面内的点等等.

3.注意精微,要善于区分邻近概念,比如“实数对”与“有序实数对”虽两字之差,但意义不同.


精选图文

领取福利

微信扫码领取福利

函数的图象(一)

微信扫码分享