; 师:这个圆的面积比4 r2 小,等不等于3 r2 呢? 生:看上去比3 r2 又要大一些。 师:现在我们可以大致估计一下,这个圆面积要比3 r2 多一点,也就是r2 的3倍多一点。至于多多少,现在就来推导圆面积的计算公式。 (教师要求学生把预先准备好的一个圆分成16个相等的扇形,拼成一近似的长方形,学生可以一边看书,一边操作) 师:同学们观察一下,拼成的是什么图形? 生:近似于长方形。 师:说得很好,为什么说近似长方形,哪里不太像? 生:长边都是许多弧形组成,不是直线。 师:这里我们把圆分成16等分,还能分吗? 生:可以分成32等分、64等分、128等分…… 师:究竟能分多少份呢? 生:无数份,可以永远分下去。 师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。师:把圆转化成长方形后,这个长方形的面积怎样计算? (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。) 长方形面积= 长 ×宽 ↓ ↓ 圆的面积=圆周长的一半×半径 ↓ = πr × r = πr2 师:现在可以回答前面提出的问题,圆面积是以半径为边长的正方形面积多少倍呢? 生: π倍。 生:约等于3.14倍。 师:刚才我们的猜想是正确的,圆面积的3 r2 多一点,现在推导出来的圆面积公式是πr2 ,也就是约等于3.14 r2 。 师:现在请同学们把圆面积公式的推导过程再完整地说一遍。 (学生回答略) [评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]巩固新课 采用抢答比赛的形式巩固新课。把学生分成4组,每组的底分为100分,答对1题加10分,答错1题扣10分。抢答题用投影片逐题出现: (1)计算圆的面积必需要具备哪些条件? (2)一个圆的直径与正方形边长相等,圆和正方形哪个面积大? (3)半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米? (4)圆能不能转化成三角形,来推导出求圆面积的公式?
(出示第4题前,教师宣布:第4题比较难,要先用学具摆,用相等的16个扇形先摆成三角形,然后观察,再写出推导过程。谁回答正确得30分。学生情绪高涨,都积极思考,抢着摆学具,抢着到黑板上写出推导的算式。) 三角开面积= 底 × 高 ÷ 2 = × 4r ÷ 2 = × 4r ÷ 2 =2πr × r ÷ 2 =πr2 [评:用抢答形式巩固新课,设计新颖,激发学生兴趣,调动积极性,把课堂教学推向了高潮。特别第4题作为思考题,有助于发展学生的创造性思维。]课堂小结 师:这堂课大家学到了什么?有什么收获? 学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。 叮铃铃,下课钤响了,这堂课在轻松愉快的气氛中结束。 [评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]